一种基于半导体激光器的x射线辐射场探测装置的制造方法
专利名称:一种基于半导体激光器的x射线辐射场探测装置的制造方法
【专利摘要】本实用新型属于脉冲辐射探测领域,具体涉及一种基于半导体激光器的X射线辐射场探测装置。该探测装置包括辐射探测器和激光功率测量记录设备;辐射探测器通过光纤或者激光聚焦传输器件与激光功率测量记录设备实现光路连通;辐射探测器包括半导体激光器和为半导体激光器提供预偏置电流的外接电源,外接电源所提供的电流大于或者等于半导体激光器的阈值电流。本实用新型利用X射线对半导体激光器有源区载流子直接调制,实现对半导体激光器输出功率的扰动,通过测量输出激光信号的变化最终获得X射线脉冲信息,基于该方法的探测系统具有结构简单、成本低廉、超快时间响应以及以激光为信号特征等优点。
【专利说明】
-种基于半导体激光器的X射线福射场探测装置
技术领域
[0001] 本实用新型属于脉冲福射探测领域,具体设及一种基于半导体激光器的X射线福 射场探测装置。
【背景技术】
[0002] 脉冲X射线、中子、伽马等电离福射粒子脉冲时间谱是脉冲射线源和福射场的主要 参数之一,X射线、伽马与中子的测量通常需要转换为带电粒子进行信号测量与记录。常见 的半导体探测器是典型的W电流为信号特征的福射探测器,闪烁探测器则是将射线转换为 反冲质子,利用质子电离发射巧光,通过光电转换器件输出电流信号予W记录,因此,现有 的探测方法总体上都是W电流为信号特征、采用同轴电缆传输信号的电流型福射探测方 法,基于该类方法的探测系统时间响应均在ns量级。随着激光技术研究工作的逐步深入,理 论上可W实现PS级X射线脉冲的无损传输与时间谱测量。然而,在实际的实验操作中,在X射 线或者其他福射粒子脉冲信号转换为激光信号W及提高相应探测系统的灵敏度等探测性 能方面仍然存在着极大的困难。
[0003] 美国劳伦斯.利弗莫尔国家实验室化WL)针对ICF超快X射线测量需求,研究并提 出了一种基于化合物半导体自由载流子折射率调制的新型福射探测器,运是目前已经报道 的唯一的能够在实验上得到验证的福射-光(Radoptic)探测器。其基本思路是利用外干设 光路,在"探测臂"上加入如GaAs等半导体,在X射线入射半导体后产生电子-空穴对,导致半 导体折射率受到调制,引起激光干设信号改变(相位调制引起),从而实现脉冲X射线的时间 谱测量。虽然实验证明了该探测方法所建立的系统时间响应能力小于lOps。但是由于该方 法灵敏度非常低,而且探测系统复杂度也很高,需要十分苛刻的技术条件和参数设置,因此 仍然难W满足福射探测领域的PS级脉冲X射线时间谱的高灵敏度测量需求。
【发明内容】
[0004] 为了解决现有的脉冲X射线福射场探测方法时间响应能力差、探测灵敏度低的技 术问题,本实用新型提供一种基于半导体激光器的X射线福射场探测装置及探测方法。
[0005] 本实用新型的技术解决方案是:一种基于半导体激光器的X射线福射场探测装置, 其特殊之处在于:包括福射探测器和激光功率测量记录设备;所述福射探测器通过光纤或 者激光聚焦传输器件与激光功率测量记录设备实现光路连通;所述福射探测器包括半导体 激光器和为半导体激光器提供电流的外接电源,外接电源所提供的电流略大于或者等于半 导体激光器的阔值电流。
[0006] 上述半导体激光器为条形边发射激光器或者垂直腔面发射激光器;对于条形边发 射激光器,X射线入射方向垂直于激光出射方向;对于垂直腔面发射激光器,X射线入射方向 平行于激光出射方向。
[0007] 上述半导体激光器的衬底外侧设置有半导体福射转换层,半导体福射转换层的外 侧设置有产生负高压的金属电极。通过增加或者改变"福射-电子"转换层,就可W用于伽马 与中子等其他福射场脉冲时间谱及强度的测量。负高压用于驱动转换层中的电子能进入激 光二极管忍片,且进入有源区。
[0008] 上述半导体福射转换层为GaAs、GaN或者其他宽禁带导体晶体,可与微电子工艺兼 容,具体材料需根据激光二极管类型与衬底材料类型决定。
[0009] 上述半导体激光器外部包覆有封装层;位于X射线入射方向的封装层为窗口材料, 其他部位封装层为金属、金刚石或者其他导热材料。封装层主要实现遮挡灰尘与器件支撑 的作用,面向射线入射方向为窗口材料,尽可能减小束流损失,与器件接触与支撑部分采用 导热性好的材料,根据探测环境由外界冷源通过该材料提供器件制冷功能。
[0010] 上述福射探测器还包括与半导体激光器接触的具有制冷功能的溫度控制模块,通 过导热性好的封装层为半导体激光器制冷。
[0011] 上述激光聚焦传输器件包括沿激光出射方向依次设置的透镜一、光阔、反射镜、透 镜二和光快口。将福射探测器和激光功率测量记录设备分离设置可W获得良好的屏蔽环 境。
[0012] 上述激光功率测量记录设备包括通过电缆连接的光探测器和数字示波器;所述光 探测器为光电倍增管或者光电二极管,具备高灵敏度、快时间响应的特点。
[0013] 上述激光功率测量记录设备为条纹相机或者光示波器,激光信号无需转换为电信 号便可W进行测量。
[0014] -种基于半导体激光器的X射线福射场探测方法,其特殊之处在于:包括W下步 骤:
[0015] 1】搭建基于半导体激光器的X射线福射场探测装置;
[0016] 2】通过外接电源对半导体激光器进行电流注入,使半导体激光器工作在阔值电流 附近,通常设置为大于或者等于阔值电流;
[0017] 3】X射线垂直于波导层方向入射半导体激光器;
[0018] 4】X射线在半导体中产生的自由载流子直接注入到激光有源区,提高激光腔内增 益,获得输出功率的增大;
[0019] 5】出射激光通过光纤或者激光聚焦传输器件传输至激光功率测量记录设备,获得 X射线脉冲时间谱。
[0020] 本实用新型的有益效果在于:
[0021] (1)本实用新型利用X射线对半导体激光器有源区载流子直接调制,实现对半导体 激光器输出功率的扰动,通过测量输出激光信号的变化最终获得X射线脉冲信息,基于该方 法的探测系统具有结构简单、成本低廉、超快时间响应W及W激光为信号特征等优点。基于 该方法的探测系统可W用于测量脉冲X射线时间谱W及稳态X射线福射场的强度测量。
[0022] (2)本实用新型利用半导体激光器P-I曲线,通过X射线入射半导体获得腔内电流 密度增益,福射转换层可直接利用激光器的GaAs衬底,由于半导体有源层载流子寿命很短, W该方法建立的探测系统能够实现<1化S的时间响应能力。
[0023] (3)与传统福射探测系统相比,该探测系统光电测量设备与半导体激光器福射转 换装置分离,由于激光传输距离和方式的优越性,导致探测系统使用时福射屏蔽非常容易 头施。
[0024] (4)本实用新型继承了半导体激光器体积小、成本低、工艺成熟等优点,所增加的 半导体福射转换层可W很好地与现有制备工艺兼容,实施可行性高。
[0025] (5)本实用新型所建立的探测系统封装完成后具备强抗电磁干扰能力,且光纤传 输相比于电流型探测器所用的同轴电缆带宽更宽,更适合快脉冲信号的探测与传输。
[0026] (6)本实用新型选用不同斜率效率的半导体激光器忍片,可W容易获得不同灵敏 度的探测装置,W满足不同强度的X射线的福射场测量。
[0027] (7)本实用新型可W通过增加或者改变"福射-电子"转换层,就可W用于伽马与中 子等其他福射场脉冲时间谱及强度的测量,适用范围广。
【附图说明】
[0028] 图1为本实用新型较佳实施例的X射线福射场探测装置结构示意图;
[0029] 图2为本实用新型较佳实施例的半导体激光器结构示意图;
[0030] 图3为本实用新型实验验证的X射线脉冲时间波形图;
[0031 ]图4为中子电子转换祀结构示意图;
[0032] 图5为伽马电子转换祀结构示意图。
[0033] 附图标记为:1-福射探测器;2-激光功率测量记录设备;3-激光聚焦传输器件;31- 透镜一;32-光阔;33-反射镜;34-透镜二;35-光快口; 4-脉冲X射线源;5-纯化层;6-金属电 极一;7-P型欧姆接触层;8-P型上限制层;9-空间限制层一;10-有源区;11-空间限制层二; 12-N型下限制层;13-N型衬底缓冲层;14-金属电极二;15-福射转换层;16-金属电极云17- 闪烁探测器。
【具体实施方式】
[0034] 半导体激光器结构紧凑、成本低廉,能带工程的成功应用极大降低了半导体激光 器的电流阔值,根据半导体激光器的工作原理,无论W何种形式实现粒子数反转,即达到电 流密度阔值,均能获得激光输出。半导体腔内本身就是一个非常稳定的F-P干设系统,而有 源区材料多为GaAs基化合物半导体,因此,利用脉冲射线入射半导体激光波导层,产生的电 子-空穴对可W实现半导体激光器有源区载流子密度调制,实现半导体激光器输出功率腔 内调制。本实用新型基于运一思路提出一种基于半导体激光器腔内调制的脉冲X射线时间 谱的测量方法,由于半导体激光器有源层非常薄,基于该方法的探测系统时间响应能力理 论上要好于化化实验室基于外调制方式的探测系统。实验结果表明该探测方法用于脉冲X 射线时间谱测量具有可行性,且证明基于该方法的探测系统灵敏度要远远高于现有激光方 法X射线探测系统。另外,通过合理设计探测系统结构,该探测方法还可W用于脉冲中子、伽 马等福射脉冲时间谱的测量。
[0035] 该探测方法是基于半导体激光器工作原理来实现的。脉冲X射线作为小信号调制 "源",产生的载流子A N(t)并因此对半导体激光器动态输出的影响,可W通过载流子和光 子的速率方程来体现:
[0036] 载流子数的速率方程:
[0037]
[0038] 其中No为X射线入射前有源区的载流子数密度,AN(t)为X射线引起的有源区增加 的载流子数密度,Rsp为自发复合速率,Rnr为非复合速率,V是有源区的体积,Io为器件外界注 入电流,化为内量子效率,q为电子电荷量,R21-Rl2 = UggNp为受激发射与受激吸收导致的净 增长速率,g为光增益系数,?为群速度,F(t)为X射线福射引起的载流子密度速率:
[0044] 其中N=No+AN(t)。根据本实用新型方法的基本原则,只考虑阔值W上的情况,贝U 激光器输出功率:
[0039]
[0040]
[0041]
[0042]
[0043]
[0045]
[0046] 其中A I = qV A N(t),可W看出激光输出功率随时间的变化决定于X射线福射场引 起的电流随时间的变化量,因此当激光二极管忍片预偏电流在阔值电流W上时,通过测量 记录激光功率的时间-功率谱就可W获得脉冲X射线的时间波形,运一情形对应的激光输出 功率分别为:
[0047] 当Io= Ith时,激光输出功率为:
[004引
hv
[0049] 由于对于某一特定的器件riiTi。一为常数,贝化。(t)的波形可W完整反映X射线的 'q 时间谱信息,且呈线性关系,当Io>Ith时,激光二极管在X射线入射前已经发生激射,而A I (t)作为附加信号对激光信号完成调制,同样可W反映出X射线的时间谱信息,但当Io过大 时,由于其产生的激光功率与X射线贡献的功率增量相比太大,反而会导致测到的脉冲信号 越小,因此预偏电流设置在阔值电流附近时信噪比最高。
[0050] 而当Io<Ith时,即为注入电流远小于阔值电流,此时激光二极管激光功率输出接 近于零,自发光功率式
并W近乎线性的方式随注入电流而增大,但在本 文的讨论中需要考虑X射线引入的载流子密度的情况。即Io与Ith相差不大时,尽管激光二极 管预偏注入电流小于阔值电流,但X射线贡献的电流密度使得激光二极管最终工作在阔值 电流W上,此时,脉冲X射线入射产生的A Kt)其中一部分需要用来"填补"激光二极管预偏 置电流与阔值电流之间的差值,在运一情形下,有两种可能:1)在Io-Ith = -AKt)时,此时 激光输出功率为:
[0化1 ]
[0052] 即表明此时激光二极管输出功率不随时间变化,实验上观察不到X射线脉冲波形; 2)在0<Ith-Io< AI(t)时,此时P。(t)>0,即实验上可W观察到X射线引起的脉冲波形,但 无法完整反映脉冲X射线时间谱信息,X射线产生的A I(t)需要抵消阔值电流与预偏注入电 流的差值,使得实际测量到的激光功率脉冲信号只反映抵消W后的剩余载流子信号,因此, 实验中将观察到"截底"的脉冲信号。
[0053] 半导体有源区很窄(1微米W下),且寿命很短。WGaAs为例,能量为40keV的X在 GaAs中载流子产生与复合的时间<120fs(Richard A丄ondon,Mark E丄ow;ry,et al.2013, J.Appl.Phys),由于该时间是决定探测器时间响应能力的决定因素,因此,基于半导体激光 二极管(激光器)的脉冲时间谱测量方法理论上容易实现<1化S的时间响应能力。
[0054] 下面结合具体实施例对本实用新型所提供的X射线福射场探测装置及其工作方法 进行说明。
[0055] 参见图1,本实用新型较佳实施例的探测装置包括两部分:福射探测器1和激光功 率测量记录设备2。二者相互分离设置,通常通过设计合理光路或采用光纤的手段将激光信 号传输到远离福射源的地方进行测量记录,进而获得良好的屏蔽环境。本实施例中通过激 光聚焦传输器件3实现福射探测器1和激光功率测量记录设备2的光路连通。激光聚焦传输 器件3包括沿激光出射方向依次设置的透镜一31、光阔32、反射镜33、透镜二34和光快口 35。
[0056] 福射探测器1包括半导体激光器和为半导体激光器提供电流的外接电源,外接电 源所提供的电流大于或者等于半导体激光器的阔值电流。
[0057] 激光功率测量记录设备2进行激光信号的测量,具体可W由具备高灵敏度、快时间 响应的光探测器实现,如微通道板(MCP)光电倍增管或者快响应光电二极管,波形记录设备 由高带宽示波器记录。若采用条纹相机或者光示波器等先进激光脉冲测量记录设备,则激 光信号无需转换为电信号进行测量。
[0058] 该探测装置W半导体激光器为核屯、器件,对于X射线入射方向垂直于有源区波导 轴线方向,即对于条形边发射激光器,入射激发方向与激光出射方向垂直;而对于垂直腔面 发射激光器,X射线入射激发方向与激光出射方向平行。半导体激光器通常选择直流输出的 类型。图2为半导体激光器的一种结构示意图,X入射方向为垂直于波导层方向,依次经过器 件封装层(金属电极= 16)、转换祀层(福射转换层15)、电极接触层(金属电极二14)进入半 导体激光结构层(激光二极管裸管)。首先通过外接电源对激光二极管进行电流注入,使激 光二极管工作在阔值电流W上(或附近),记录仪器(如示波器)W此为探测器初始状态(具 体表现为基线抬高)。再由X射线在半导体中产生的自由载流子直接"注入"到激光有源区, 在有源区为多量子阱材料时,几乎所有的载流子被很好地限制在势阱当中,进而提高激光 腔内增益,获得输出功率的增大。当实际装置制备中需有半导体福射转换层11时,根据转换 层厚度需加负高压,用于驱动转换层中的电子能进入激光二极管忍片,且进入有源区。
[0059] 探测方法验证实验基于图2的器件结构,采用分别限制多量子阱激光二极管忍片, 激光波长650nm,阔值电流为20mA。具体实验布局如图1所示,所采用的脉冲X射线源能量在 百keV量级,脉宽(底宽)约50ns,X射线脉冲垂直出光方向入射。经由透镜一 31对半导体激光 发射光束进行聚焦,通过光阔32滤除杂散光,采用反射镜33改变激光传输方向,使激光入射 到易于屏蔽的区域被光电转换器件测量。如果采用多通道方式记录,则反射镜33可W替换 为半透半反镜,进行任意、重复分束,再分别记录。透镜二34用于对激光束二次聚焦,使其可 W继续向前传输。由于当半导体激光器处于预偏置状态下时,会发射巧光,为了避免光电倍 增管与高带宽示波器处于长时间曝光状态,加入光快口 35通过定时器或者手动方式在脉冲 入射前(如提前3s)打开快口,使光传输到光电倍增管中进行测量,由泰克数字示波器(带宽 IGHz)进行记录。此外,为了与现有成熟探测器结果进行比对,实验中采用X射线时间谱常用 的闪烁探测器17进行X脉冲信号监测。实验结果如图3所示的波形归一化W后的结果。可W 看出,所获得的脉冲时间波形符合较好,由于实验站没有加入激光初始强度衰减,由本实用 新型获得的时间谱波形基线噪声较明显,实际应用中可W通过加入衰减片W及探测器件制 冷来控制噪声。
[0060]本实用新型所使用的探测装置及探测方法也可用于中子或者伽马射线脉冲时间 谱的测量,只需要改变福射转换层的设计。采用如图4所示的中子与电子转换祀或者如图5 所示的伽马与电子转换祀,可W将不带电的中子或者伽马转换为电子,通过外加电场驱动 电子进入激光二极管有源区,获得激光二极管功率的增大。
【主权项】
1. 一种基于半导体激光器的X射线辐射场探测装置,其特征在于:包括辐射探测器和激 光功率测量记录设备;所述辐射探测器通过光纤或者激光聚焦传输器件与激光功率测量记 录设备实现光路连通; 所述辐射探测器包括半导体激光器和为半导体激光器提供预偏置电流的外接电源,外 接电源所提供的电流大于或者等于半导体激光器的阈值电流。2. 根据权利要求1所述的基于半导体激光器的X射线辐射场探测装置,其特征在于:所 述半导体激光器为条形边发射激光器或者垂直腔面发射激光器;对于条形边发射激光器,X 射线入射方向垂直于激光出射方向;对于垂直腔面发射激光器,X射线入射方向平行于激光 出射方向。3. 根据权利要求2所述的基于半导体激光器的X射线辐射场探测装置,其特征在于:所 述半导体激光器的衬底外侧设置有半导体辐射转换层,半导体辐射转换层的外侧设置有产 生负高压的金属电极。4. 根据权利要求3所述的基于半导体激光器的X射线辐射场探测装置,其特征在于:所 述半导体辐射转换层为GaAs、GaN或者其他宽禁带半导体晶体;所述半导体辐射转换层与半 导体激光器芯片集成封装在一起。5. 根据权利要求4所述的基于半导体激光器的X射线辐射场探测装置,其特征在于:所 述半导体激光器外部包覆有封装层;位于X射线入射方向的封装层为窗口材料,其他部位封 装层为金属、金刚石或者其他导热材料。6. 根据权利要求5所述的基于半导体激光器的X射线辐射场探测装置,其特征在于:所 述辐射探测器还包括与半导体激光器接触的具有制冷功能的温度控制模块。7. 根据权利要求1-6中任一所述的基于半导体激光器的X射线辐射场探测装置,其特征 在于:所述激光聚焦传输器件包括沿激光出射方向依次设置的透镜一、光阑、反射镜、透镜 二和光快门;所述激光聚焦传输器在激光出射方向上还设置有衰减片。8. 根据权利要求1-6中任一所述的基于半导体激光器的X射线辐射场探测装置,其特征 在于:所述激光功率测量记录设备包括通过电缆连接的光探测器和数字示波器;所述光探 测器为光电倍增管或者其他光电转换器件。9. 根据权利要求1-6中任一所述的基于半导体激光器的X射线辐射场探测装置,其特征 在于:所述激光功率测量记录设备为数字示波器、条纹相机或者其他激光脉冲信号记录设 备。
【文档编号】G01T1/36GK205720696SQ201620311053
【公开日】2016年11月23日
【申请日】2016年4月14日
【发明人】刘军, 欧阳晓平, 黑东炜, 盛亮, 张建福, 翁秀峰, 阮金陆
【申请人】西北核技术研究所
【专利摘要】本实用新型属于脉冲辐射探测领域,具体涉及一种基于半导体激光器的X射线辐射场探测装置。该探测装置包括辐射探测器和激光功率测量记录设备;辐射探测器通过光纤或者激光聚焦传输器件与激光功率测量记录设备实现光路连通;辐射探测器包括半导体激光器和为半导体激光器提供预偏置电流的外接电源,外接电源所提供的电流大于或者等于半导体激光器的阈值电流。本实用新型利用X射线对半导体激光器有源区载流子直接调制,实现对半导体激光器输出功率的扰动,通过测量输出激光信号的变化最终获得X射线脉冲信息,基于该方法的探测系统具有结构简单、成本低廉、超快时间响应以及以激光为信号特征等优点。
【专利说明】
-种基于半导体激光器的X射线福射场探测装置
技术领域
[0001] 本实用新型属于脉冲福射探测领域,具体设及一种基于半导体激光器的X射线福 射场探测装置。
【背景技术】
[0002] 脉冲X射线、中子、伽马等电离福射粒子脉冲时间谱是脉冲射线源和福射场的主要 参数之一,X射线、伽马与中子的测量通常需要转换为带电粒子进行信号测量与记录。常见 的半导体探测器是典型的W电流为信号特征的福射探测器,闪烁探测器则是将射线转换为 反冲质子,利用质子电离发射巧光,通过光电转换器件输出电流信号予W记录,因此,现有 的探测方法总体上都是W电流为信号特征、采用同轴电缆传输信号的电流型福射探测方 法,基于该类方法的探测系统时间响应均在ns量级。随着激光技术研究工作的逐步深入,理 论上可W实现PS级X射线脉冲的无损传输与时间谱测量。然而,在实际的实验操作中,在X射 线或者其他福射粒子脉冲信号转换为激光信号W及提高相应探测系统的灵敏度等探测性 能方面仍然存在着极大的困难。
[0003] 美国劳伦斯.利弗莫尔国家实验室化WL)针对ICF超快X射线测量需求,研究并提 出了一种基于化合物半导体自由载流子折射率调制的新型福射探测器,运是目前已经报道 的唯一的能够在实验上得到验证的福射-光(Radoptic)探测器。其基本思路是利用外干设 光路,在"探测臂"上加入如GaAs等半导体,在X射线入射半导体后产生电子-空穴对,导致半 导体折射率受到调制,引起激光干设信号改变(相位调制引起),从而实现脉冲X射线的时间 谱测量。虽然实验证明了该探测方法所建立的系统时间响应能力小于lOps。但是由于该方 法灵敏度非常低,而且探测系统复杂度也很高,需要十分苛刻的技术条件和参数设置,因此 仍然难W满足福射探测领域的PS级脉冲X射线时间谱的高灵敏度测量需求。
【发明内容】
[0004] 为了解决现有的脉冲X射线福射场探测方法时间响应能力差、探测灵敏度低的技 术问题,本实用新型提供一种基于半导体激光器的X射线福射场探测装置及探测方法。
[0005] 本实用新型的技术解决方案是:一种基于半导体激光器的X射线福射场探测装置, 其特殊之处在于:包括福射探测器和激光功率测量记录设备;所述福射探测器通过光纤或 者激光聚焦传输器件与激光功率测量记录设备实现光路连通;所述福射探测器包括半导体 激光器和为半导体激光器提供电流的外接电源,外接电源所提供的电流略大于或者等于半 导体激光器的阔值电流。
[0006] 上述半导体激光器为条形边发射激光器或者垂直腔面发射激光器;对于条形边发 射激光器,X射线入射方向垂直于激光出射方向;对于垂直腔面发射激光器,X射线入射方向 平行于激光出射方向。
[0007] 上述半导体激光器的衬底外侧设置有半导体福射转换层,半导体福射转换层的外 侧设置有产生负高压的金属电极。通过增加或者改变"福射-电子"转换层,就可W用于伽马 与中子等其他福射场脉冲时间谱及强度的测量。负高压用于驱动转换层中的电子能进入激 光二极管忍片,且进入有源区。
[0008] 上述半导体福射转换层为GaAs、GaN或者其他宽禁带导体晶体,可与微电子工艺兼 容,具体材料需根据激光二极管类型与衬底材料类型决定。
[0009] 上述半导体激光器外部包覆有封装层;位于X射线入射方向的封装层为窗口材料, 其他部位封装层为金属、金刚石或者其他导热材料。封装层主要实现遮挡灰尘与器件支撑 的作用,面向射线入射方向为窗口材料,尽可能减小束流损失,与器件接触与支撑部分采用 导热性好的材料,根据探测环境由外界冷源通过该材料提供器件制冷功能。
[0010] 上述福射探测器还包括与半导体激光器接触的具有制冷功能的溫度控制模块,通 过导热性好的封装层为半导体激光器制冷。
[0011] 上述激光聚焦传输器件包括沿激光出射方向依次设置的透镜一、光阔、反射镜、透 镜二和光快口。将福射探测器和激光功率测量记录设备分离设置可W获得良好的屏蔽环 境。
[0012] 上述激光功率测量记录设备包括通过电缆连接的光探测器和数字示波器;所述光 探测器为光电倍增管或者光电二极管,具备高灵敏度、快时间响应的特点。
[0013] 上述激光功率测量记录设备为条纹相机或者光示波器,激光信号无需转换为电信 号便可W进行测量。
[0014] -种基于半导体激光器的X射线福射场探测方法,其特殊之处在于:包括W下步 骤:
[0015] 1】搭建基于半导体激光器的X射线福射场探测装置;
[0016] 2】通过外接电源对半导体激光器进行电流注入,使半导体激光器工作在阔值电流 附近,通常设置为大于或者等于阔值电流;
[0017] 3】X射线垂直于波导层方向入射半导体激光器;
[0018] 4】X射线在半导体中产生的自由载流子直接注入到激光有源区,提高激光腔内增 益,获得输出功率的增大;
[0019] 5】出射激光通过光纤或者激光聚焦传输器件传输至激光功率测量记录设备,获得 X射线脉冲时间谱。
[0020] 本实用新型的有益效果在于:
[0021] (1)本实用新型利用X射线对半导体激光器有源区载流子直接调制,实现对半导体 激光器输出功率的扰动,通过测量输出激光信号的变化最终获得X射线脉冲信息,基于该方 法的探测系统具有结构简单、成本低廉、超快时间响应W及W激光为信号特征等优点。基于 该方法的探测系统可W用于测量脉冲X射线时间谱W及稳态X射线福射场的强度测量。
[0022] (2)本实用新型利用半导体激光器P-I曲线,通过X射线入射半导体获得腔内电流 密度增益,福射转换层可直接利用激光器的GaAs衬底,由于半导体有源层载流子寿命很短, W该方法建立的探测系统能够实现<1化S的时间响应能力。
[0023] (3)与传统福射探测系统相比,该探测系统光电测量设备与半导体激光器福射转 换装置分离,由于激光传输距离和方式的优越性,导致探测系统使用时福射屏蔽非常容易 头施。
[0024] (4)本实用新型继承了半导体激光器体积小、成本低、工艺成熟等优点,所增加的 半导体福射转换层可W很好地与现有制备工艺兼容,实施可行性高。
[0025] (5)本实用新型所建立的探测系统封装完成后具备强抗电磁干扰能力,且光纤传 输相比于电流型探测器所用的同轴电缆带宽更宽,更适合快脉冲信号的探测与传输。
[0026] (6)本实用新型选用不同斜率效率的半导体激光器忍片,可W容易获得不同灵敏 度的探测装置,W满足不同强度的X射线的福射场测量。
[0027] (7)本实用新型可W通过增加或者改变"福射-电子"转换层,就可W用于伽马与中 子等其他福射场脉冲时间谱及强度的测量,适用范围广。
【附图说明】
[0028] 图1为本实用新型较佳实施例的X射线福射场探测装置结构示意图;
[0029] 图2为本实用新型较佳实施例的半导体激光器结构示意图;
[0030] 图3为本实用新型实验验证的X射线脉冲时间波形图;
[0031 ]图4为中子电子转换祀结构示意图;
[0032] 图5为伽马电子转换祀结构示意图。
[0033] 附图标记为:1-福射探测器;2-激光功率测量记录设备;3-激光聚焦传输器件;31- 透镜一;32-光阔;33-反射镜;34-透镜二;35-光快口; 4-脉冲X射线源;5-纯化层;6-金属电 极一;7-P型欧姆接触层;8-P型上限制层;9-空间限制层一;10-有源区;11-空间限制层二; 12-N型下限制层;13-N型衬底缓冲层;14-金属电极二;15-福射转换层;16-金属电极云17- 闪烁探测器。
【具体实施方式】
[0034] 半导体激光器结构紧凑、成本低廉,能带工程的成功应用极大降低了半导体激光 器的电流阔值,根据半导体激光器的工作原理,无论W何种形式实现粒子数反转,即达到电 流密度阔值,均能获得激光输出。半导体腔内本身就是一个非常稳定的F-P干设系统,而有 源区材料多为GaAs基化合物半导体,因此,利用脉冲射线入射半导体激光波导层,产生的电 子-空穴对可W实现半导体激光器有源区载流子密度调制,实现半导体激光器输出功率腔 内调制。本实用新型基于运一思路提出一种基于半导体激光器腔内调制的脉冲X射线时间 谱的测量方法,由于半导体激光器有源层非常薄,基于该方法的探测系统时间响应能力理 论上要好于化化实验室基于外调制方式的探测系统。实验结果表明该探测方法用于脉冲X 射线时间谱测量具有可行性,且证明基于该方法的探测系统灵敏度要远远高于现有激光方 法X射线探测系统。另外,通过合理设计探测系统结构,该探测方法还可W用于脉冲中子、伽 马等福射脉冲时间谱的测量。
[0035] 该探测方法是基于半导体激光器工作原理来实现的。脉冲X射线作为小信号调制 "源",产生的载流子A N(t)并因此对半导体激光器动态输出的影响,可W通过载流子和光 子的速率方程来体现:
[0036] 载流子数的速率方程:
[0037]
[0038] 其中No为X射线入射前有源区的载流子数密度,AN(t)为X射线引起的有源区增加 的载流子数密度,Rsp为自发复合速率,Rnr为非复合速率,V是有源区的体积,Io为器件外界注 入电流,化为内量子效率,q为电子电荷量,R21-Rl2 = UggNp为受激发射与受激吸收导致的净 增长速率,g为光增益系数,?为群速度,F(t)为X射线福射引起的载流子密度速率:
[0044] 其中N=No+AN(t)。根据本实用新型方法的基本原则,只考虑阔值W上的情况,贝U 激光器输出功率:
[0039]
[0040]
[0041]
[0042]
[0043]
[0045]
[0046] 其中A I = qV A N(t),可W看出激光输出功率随时间的变化决定于X射线福射场引 起的电流随时间的变化量,因此当激光二极管忍片预偏电流在阔值电流W上时,通过测量 记录激光功率的时间-功率谱就可W获得脉冲X射线的时间波形,运一情形对应的激光输出 功率分别为:
[0047] 当Io= Ith时,激光输出功率为:
[004引
hv
[0049] 由于对于某一特定的器件riiTi。一为常数,贝化。(t)的波形可W完整反映X射线的 'q 时间谱信息,且呈线性关系,当Io>Ith时,激光二极管在X射线入射前已经发生激射,而A I (t)作为附加信号对激光信号完成调制,同样可W反映出X射线的时间谱信息,但当Io过大 时,由于其产生的激光功率与X射线贡献的功率增量相比太大,反而会导致测到的脉冲信号 越小,因此预偏电流设置在阔值电流附近时信噪比最高。
[0050] 而当Io<Ith时,即为注入电流远小于阔值电流,此时激光二极管激光功率输出接 近于零,自发光功率式
并W近乎线性的方式随注入电流而增大,但在本 文的讨论中需要考虑X射线引入的载流子密度的情况。即Io与Ith相差不大时,尽管激光二极 管预偏注入电流小于阔值电流,但X射线贡献的电流密度使得激光二极管最终工作在阔值 电流W上,此时,脉冲X射线入射产生的A Kt)其中一部分需要用来"填补"激光二极管预偏 置电流与阔值电流之间的差值,在运一情形下,有两种可能:1)在Io-Ith = -AKt)时,此时 激光输出功率为:
[0化1 ]
[0052] 即表明此时激光二极管输出功率不随时间变化,实验上观察不到X射线脉冲波形; 2)在0<Ith-Io< AI(t)时,此时P。(t)>0,即实验上可W观察到X射线引起的脉冲波形,但 无法完整反映脉冲X射线时间谱信息,X射线产生的A I(t)需要抵消阔值电流与预偏注入电 流的差值,使得实际测量到的激光功率脉冲信号只反映抵消W后的剩余载流子信号,因此, 实验中将观察到"截底"的脉冲信号。
[0053] 半导体有源区很窄(1微米W下),且寿命很短。WGaAs为例,能量为40keV的X在 GaAs中载流子产生与复合的时间<120fs(Richard A丄ondon,Mark E丄ow;ry,et al.2013, J.Appl.Phys),由于该时间是决定探测器时间响应能力的决定因素,因此,基于半导体激光 二极管(激光器)的脉冲时间谱测量方法理论上容易实现<1化S的时间响应能力。
[0054] 下面结合具体实施例对本实用新型所提供的X射线福射场探测装置及其工作方法 进行说明。
[0055] 参见图1,本实用新型较佳实施例的探测装置包括两部分:福射探测器1和激光功 率测量记录设备2。二者相互分离设置,通常通过设计合理光路或采用光纤的手段将激光信 号传输到远离福射源的地方进行测量记录,进而获得良好的屏蔽环境。本实施例中通过激 光聚焦传输器件3实现福射探测器1和激光功率测量记录设备2的光路连通。激光聚焦传输 器件3包括沿激光出射方向依次设置的透镜一31、光阔32、反射镜33、透镜二34和光快口 35。
[0056] 福射探测器1包括半导体激光器和为半导体激光器提供电流的外接电源,外接电 源所提供的电流大于或者等于半导体激光器的阔值电流。
[0057] 激光功率测量记录设备2进行激光信号的测量,具体可W由具备高灵敏度、快时间 响应的光探测器实现,如微通道板(MCP)光电倍增管或者快响应光电二极管,波形记录设备 由高带宽示波器记录。若采用条纹相机或者光示波器等先进激光脉冲测量记录设备,则激 光信号无需转换为电信号进行测量。
[0058] 该探测装置W半导体激光器为核屯、器件,对于X射线入射方向垂直于有源区波导 轴线方向,即对于条形边发射激光器,入射激发方向与激光出射方向垂直;而对于垂直腔面 发射激光器,X射线入射激发方向与激光出射方向平行。半导体激光器通常选择直流输出的 类型。图2为半导体激光器的一种结构示意图,X入射方向为垂直于波导层方向,依次经过器 件封装层(金属电极= 16)、转换祀层(福射转换层15)、电极接触层(金属电极二14)进入半 导体激光结构层(激光二极管裸管)。首先通过外接电源对激光二极管进行电流注入,使激 光二极管工作在阔值电流W上(或附近),记录仪器(如示波器)W此为探测器初始状态(具 体表现为基线抬高)。再由X射线在半导体中产生的自由载流子直接"注入"到激光有源区, 在有源区为多量子阱材料时,几乎所有的载流子被很好地限制在势阱当中,进而提高激光 腔内增益,获得输出功率的增大。当实际装置制备中需有半导体福射转换层11时,根据转换 层厚度需加负高压,用于驱动转换层中的电子能进入激光二极管忍片,且进入有源区。
[0059] 探测方法验证实验基于图2的器件结构,采用分别限制多量子阱激光二极管忍片, 激光波长650nm,阔值电流为20mA。具体实验布局如图1所示,所采用的脉冲X射线源能量在 百keV量级,脉宽(底宽)约50ns,X射线脉冲垂直出光方向入射。经由透镜一 31对半导体激光 发射光束进行聚焦,通过光阔32滤除杂散光,采用反射镜33改变激光传输方向,使激光入射 到易于屏蔽的区域被光电转换器件测量。如果采用多通道方式记录,则反射镜33可W替换 为半透半反镜,进行任意、重复分束,再分别记录。透镜二34用于对激光束二次聚焦,使其可 W继续向前传输。由于当半导体激光器处于预偏置状态下时,会发射巧光,为了避免光电倍 增管与高带宽示波器处于长时间曝光状态,加入光快口 35通过定时器或者手动方式在脉冲 入射前(如提前3s)打开快口,使光传输到光电倍增管中进行测量,由泰克数字示波器(带宽 IGHz)进行记录。此外,为了与现有成熟探测器结果进行比对,实验中采用X射线时间谱常用 的闪烁探测器17进行X脉冲信号监测。实验结果如图3所示的波形归一化W后的结果。可W 看出,所获得的脉冲时间波形符合较好,由于实验站没有加入激光初始强度衰减,由本实用 新型获得的时间谱波形基线噪声较明显,实际应用中可W通过加入衰减片W及探测器件制 冷来控制噪声。
[0060]本实用新型所使用的探测装置及探测方法也可用于中子或者伽马射线脉冲时间 谱的测量,只需要改变福射转换层的设计。采用如图4所示的中子与电子转换祀或者如图5 所示的伽马与电子转换祀,可W将不带电的中子或者伽马转换为电子,通过外加电场驱动 电子进入激光二极管有源区,获得激光二极管功率的增大。
【主权项】
1. 一种基于半导体激光器的X射线辐射场探测装置,其特征在于:包括辐射探测器和激 光功率测量记录设备;所述辐射探测器通过光纤或者激光聚焦传输器件与激光功率测量记 录设备实现光路连通; 所述辐射探测器包括半导体激光器和为半导体激光器提供预偏置电流的外接电源,外 接电源所提供的电流大于或者等于半导体激光器的阈值电流。2. 根据权利要求1所述的基于半导体激光器的X射线辐射场探测装置,其特征在于:所 述半导体激光器为条形边发射激光器或者垂直腔面发射激光器;对于条形边发射激光器,X 射线入射方向垂直于激光出射方向;对于垂直腔面发射激光器,X射线入射方向平行于激光 出射方向。3. 根据权利要求2所述的基于半导体激光器的X射线辐射场探测装置,其特征在于:所 述半导体激光器的衬底外侧设置有半导体辐射转换层,半导体辐射转换层的外侧设置有产 生负高压的金属电极。4. 根据权利要求3所述的基于半导体激光器的X射线辐射场探测装置,其特征在于:所 述半导体辐射转换层为GaAs、GaN或者其他宽禁带半导体晶体;所述半导体辐射转换层与半 导体激光器芯片集成封装在一起。5. 根据权利要求4所述的基于半导体激光器的X射线辐射场探测装置,其特征在于:所 述半导体激光器外部包覆有封装层;位于X射线入射方向的封装层为窗口材料,其他部位封 装层为金属、金刚石或者其他导热材料。6. 根据权利要求5所述的基于半导体激光器的X射线辐射场探测装置,其特征在于:所 述辐射探测器还包括与半导体激光器接触的具有制冷功能的温度控制模块。7. 根据权利要求1-6中任一所述的基于半导体激光器的X射线辐射场探测装置,其特征 在于:所述激光聚焦传输器件包括沿激光出射方向依次设置的透镜一、光阑、反射镜、透镜 二和光快门;所述激光聚焦传输器在激光出射方向上还设置有衰减片。8. 根据权利要求1-6中任一所述的基于半导体激光器的X射线辐射场探测装置,其特征 在于:所述激光功率测量记录设备包括通过电缆连接的光探测器和数字示波器;所述光探 测器为光电倍增管或者其他光电转换器件。9. 根据权利要求1-6中任一所述的基于半导体激光器的X射线辐射场探测装置,其特征 在于:所述激光功率测量记录设备为数字示波器、条纹相机或者其他激光脉冲信号记录设 备。
【文档编号】G01T1/36GK205720696SQ201620311053
【公开日】2016年11月23日
【申请日】2016年4月14日
【发明人】刘军, 欧阳晓平, 黑东炜, 盛亮, 张建福, 翁秀峰, 阮金陆
【申请人】西北核技术研究所